A simulation model for amphiphilic molecules in a mesoscale solvent
نویسندگان
چکیده
We present a stochastic rotation dynamics model of amphiphilic molecules. Vesicle formation of amphiphilic molecules in a thermal fluctuating fluid is demonstrated in this paper. In the model, the interaction of amphiphilic molecules is represented by Lennard–Jones potentials, and stochastic rotation dynamics [T. Ihle, D.M. Kroll, Stochastic rotation dynamics: A Galilean-invariant mesoscopic model for fluid flow, Phys. Rev. E 63 (2001) 020201(R)] of mesoscopic particles has been adopted to reproduce the correct hydrodynamics of solvent fluids at the macroscopic scale. The amphiphilic molecules and the solvent particles interact via Boltzmann sampling of a color potential as suggested in a previous paper [Y. Inoue, Y. Chen, H. Ohashi, A mesoscopic simulation model for immiscible multiphase fluids, J. Comput. Phys. 201 (2004) 191] to reproduce a phase separation between hydrophobic atoms and solvent fluids. c © 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
Shape transition of micelles in amphiphilic solution: A molecular dynamics study
The shape transition of micelles in an amphiphilic solution is studied by a molecular dynamics simulation of coarse-grained rigid amphiphilic molecules with explicit solvent molecules. Our simulations show that the micellar shape changes from a disc into a cylinder, and then into a sphere as the hydrophilic interaction increases. We find that the potential energy decreases monotonically even du...
متن کاملMolecular Dynamics Simulation of Micellar Shape Change in Amphiphilic Solution∗)
Micellar shape change in an amphiphilic solution is investigated by a molecular dynamics simulation of coarse-grained semiflexible amphiphilic molecules with explicit solvent molecules. Our simulations show that a cylindrical micelle is obtained at small molecular rigidity while a disc-shaped micelle appears at large molecular rigidity. We find that most chains are in an extended conformation a...
متن کاملComplex micelles from the self-assembly of coil-rod-coil amphiphilic triblock copolymers in selective solvents
We report an extensive simulation study on the spontaneous formation of complex micelles from coilrod-coil amphiphilic triblock copolymers in dilute solution resulting from solvent selectivity. The amphiphilic molecule is built from one hydrophilic block on each side and a hydrophobic block in the middle. The rigidity of the rod block is introduced by adding a bond-bending potential of the angl...
متن کاملAb Initio Studies of Rotation and Solvent Effects for two important membrane molecules: DPPC and DMPC
DPPC (dipalmitoylphosphatidylcholine) and DMPC (dimyristoylphosphatidylcholine) are taken asphospholipids with an equal polar heads and with the difference in the length of hydrocarbonchains. Results obtain from the structural optimization of the isolated DPPC and DMPC in the gasphase, at the Hartree-Fock level of theory by means of STO-3g,3-21G, 6-31G and 6-31G* basissets. the most important d...
متن کاملAmphiphilic Block Copolymer Nano-micelles: Effect of Length Ratio of the Hydrophilic Block
Block copolymer nano-micelles are especially important in cancer treatment because of their fine dimensions. In this article, three systems of amphiphilic copolymers with similar lengths and different ratios of the hydrophobic and hydrophilic chains are studied using implicit-solvent coarse-grained molecular dynamics simulations. The factor fphil is defined as the ratio of the number...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Mathematics with Applications
دوره 55 شماره
صفحات -
تاریخ انتشار 2008